ACOSH DAX Function (Math and Trig)
Returns the inverse hyperbolic cosine of a number. The number must be greater than or equal to 1. The inverse hyperbolic cosine is the value whose hyperbolic cosine is number, so ACOSH(COSH(number)) equals number.
Syntax
| Parameter | Attributes | Description |
|---|---|---|
| Number |
Any real number equal to or greater than 1. |
Return values
Examples
-- SINH, COSH, ASINH, ACOSH, TANH, ATANH, COTH, ACOTH
-- are the standard hyperbolic trigonometrical functions.
--
-- Where required, the arguments are specified in radians.
DEFINE
VAR Vals = GENERATESERIES ( -PI()+0.001, PI(), PI()/4 )
EVALUATE
ADDCOLUMNS (
Vals,
"Value (nπ)",
VAR ImproperQuartersOfPi = ROUND ( ABS ( [Value] / PI () * 4 ), 0 )
VAR WholePis = ROUNDDOWN ( ImproperQuartersOfPi / 4, 0 )
VAR ProperQuartersOfPi = MOD ( ImproperQuartersOfPi, 4 )
RETURN
IF ( ROUND ( [Value], 0 ) < 0, "-" )
& IF ( WholePis <> 0 && ImproperQuartersOfPi <> 4, WholePis )
& IF ( ProperQuartersOfPi <> 0, UNICHAR ( 187 + ProperQuartersOfPi ) )
& IF ( ImproperQuartersOfPi = 0, "0", "π" ),
"SINH", SINH ( [Value] ),
"ASINH", ASINH ( SINH ( [Value] ) ),
"COSH", COSH ( [Value] ),
"ACOSH", ACOSH ( COSH ( [Value] ) ),
"TANH", TANH ( [Value] ),
"ATANH", ATANH ( TANH ( [Value] ) ),
"COTH", COTH ( [Value] ),
"ACOTH", ACOTH ( COTH ( [Value] ) )
)
| Value | Value (nπ) | SINH | ASINH | COSH | ACOSH | TANH | ATANH | COTH | ACOTH |
|---|---|---|---|---|---|---|---|---|---|
| -3.14 | -π | -11.54 | -3.14 | 11.58 | 3.14 | -1.00 | -3.14 | -1.00 | -3.14 |
| -2.36 | -¾π | -5.22 | -2.36 | 5.32 | 2.36 | -0.98 | -2.36 | -1.02 | -2.36 |
| -1.57 | -½π | -2.30 | -1.57 | 2.51 | 1.57 | -0.92 | -1.57 | -1.09 | -1.57 |
| -0.78 | -¼π | -0.87 | -0.78 | 1.32 | 0.78 | -0.66 | -0.78 | -1.53 | -0.78 |
| 0.00 | 0 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 1,000.00 | 0.00 |
| 0.79 | ¼π | 0.87 | 0.79 | 1.33 | 0.79 | 0.66 | 0.79 | 1.52 | 0.79 |
| 1.57 | ½π | 2.30 | 1.57 | 2.51 | 1.57 | 0.92 | 1.57 | 1.09 | 1.57 |
| 2.36 | ¾π | 5.23 | 2.36 | 5.33 | 2.36 | 0.98 | 2.36 | 1.02 | 2.36 |
Last update: Oct 22, 2025 » Contribute » Show contributors
Contributors: Alberto Ferrari, Marco Russo, Kenneth Barber,
Microsoft documentation: https://docs.microsoft.com/en-us/dax/acosh-function-dax
